

Puissances d'une matrice, suites de matrices

1. Puissances d'une matrice

A. Cas des matrices diagonales

Définition 6.1 Une *matrice diagonale* est une matrice carrée dont tous les coefficients sont nuls, sauf ceux situées sur sa diagonale principale (les $a_{i,j}$ tels que i=j).

Exemple 6.1
$$D=\begin{pmatrix}1&0&0\\0&-3&0\\0&0&4\end{pmatrix}$$
 est une matrice diagonale.

Propriété 6.1 Soit D une matrice diagonale. Pour tout $n \in \mathbb{N}^*$, D^n est la matrice diagonale obtenue en élevant à la puissance n les coefficients de D.

Démonstration Par récurrence sur n.

Exemple 6.2
$$\forall n \in \mathbb{N}^*, D^n = \begin{pmatrix} 1^n & 0 & 0 \\ 0 & (-3)^n & 0 \\ 0 & 0 & 4^n \end{pmatrix}.$$

N.B : Il existe d'autres matrices "particulières", comme par exemple les matrices triangulaires supérieures (tous les coefficients qui sont en-dessous de la diagonale sont nuls), triangulaire inférieure (tous les coefficients qui sont au-dessus de la diagonale sont nuls). On dit que ces matrices sont strictement triangulaires si, de plus, les coefficients de leur diagonale sont tous nuls.

Exemple 6.3 La matrice $A = \begin{pmatrix} 0 & -3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ est strictement triangulaire supérieure, et cela engendre des

propriétés particulières, comme par exemple $A^3 = 0$ (ainsi que toutes les puissances supérieures de A).

On peut donc, pour calculer plus facilement les puissances d'une matrice, l'écrire comme somme d'une matrice diagonale et de matrices strictement triangulaires.

B. Diagonalisation

Comme on l'a vu, calculer la puissance n-ième d'une matrice diagonale est assez simple. On essaiera donc, lorsque l'on a une matrice carrée, de se ramener à une matrice diagonale.

Si cela est possible, on dira que A est diagonalisable.

Pour cela, on effectuera un changement de base dont la matrice de passage (ou matrice de changement de base) est notée P dans l'exemple ci-dessous.

Changer de base pour se ramener à une matrice diagonale s'appelle diagonaliser.

Exemple 6.4 Soient $A=\begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ la matrice carrée que l'on souhaite diagonaliser, et $P=\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ la matrice de passage adéquate.

On démontrera l'année prochaine en étudiant les application linéaires (et nous admettrons cette année) que la matrice diagonale D correspondant à A, la matrice A et la matrice de passage P vérifient la relation :

$$A = PDP^{-1}$$

Il est donc nécessaire que P soit inversible, ce qui est la cas si la "nouvelle base" est bien une base (famille libre, dont le déterminant est non nul).

Ici, on a P inversible et $P^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$.

La relation $A = PDP^{-1}$ est équivalente à $D = P^{-1}AP$, et l'on obtient donc $D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

Comme D est diagonale, il est facile de calculer D^n .

Or de la relation $A = PDP^{-1}$ découle (par récurrence) la relation $A^n = PD^nP^{-1}$. D'où

$$A^{n} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 \times 2^{n} - 2 & 6 - 3 \times 2^{n+1} \\ 2^{n} - 1 & 3 - 2^{n+1} \end{pmatrix}$$

2. Suites de matrices colonnes : $U_{n+1} = AU_n + B$

Soient, pour tous $n \in \mathbb{N}, m \in \mathbb{N}^*$:

- U_n une matrice colonne à m lignes
- $\bullet\,$ A une matrice carrée d'ordre m
- B une matrice colonne à m lignes

On note (R) la relation de récurrence

$$U_{n+1} = AU_n + B$$

A. Expression de U_n en fonction de n

Si l'on sait calculer A^n , on peut chercher à exprimer U_n en fonction de n

Méthode 1 : avec une matrice X vérifiant X = AX + B

Si une telle matrice X existe, on a alors:

$$\begin{cases} U_{n+1} = AU_n + B \\ X = AX + B \end{cases}$$
 d'où, en soustrayant membre à membre : $U_{n+1} - X = A(U_n - X)$.

La suite (V_n) définie par $V_n = U_n - X$ vérifie donc $V_{n+1} = AV_n$ pour tout $n \in \mathbb{N}$.

On en déduit par récurrence que $V_n = A^n V_0$, puis de $U_n = V_n + X$, on déduit U_n .

Propriété 6.2 S'il existe une matrice X telle que AX + B = X:

- La suite (V_n) telle que $V_n=U_n-X$ vérifie la relation $V_{n+1}=AV_n,\,n\in\mathbb{N}.$
- Pour tout n de $\mathbb{N},$ $V_n=A^nV_0,$ d'où $U_n=A^n(U_0-X)+X$

Remarque 6.1 Cette méthode est analogue à celle utilisée pour les suites numériques arithmético-géométriques du type $u_{n+1}=au_n+b$, avec $a\neq 0$ et $a\neq 1$. On cherche x (point fixe) tel que ax+b=x, i.e. $x=\frac{b}{1-a}$.

La suite auxiliaire $v_n = u_n - x$ est alors géométrique, et on sait l'étudier; on en déduit le comportement de u_n , et en particulier son expression explicite (en fonction de n).

Méthode 2 : avec une sommation

Pour tout n de \mathbb{N}^* , $U_n = AU_{n-1} + B$, donc $U_n = A(AU_{n-2} + B) + B = A^2U_{n-2} + (AB + B) = A^2U_{n-2} + B(A + I)$. Par convention, $A^0 = I$. On montre par récurrence que :

Propriété 6.3 Pour tout
$$n$$
 de \mathbb{N}^* , $U_n = A^n U_0 + (A^{n-1} + ... + A + I)B = A^n + \left(\sum_{k=0}^{n-1} A^k\right)B$.

B. Limite d'une suite de matrices

Une suite de matrices $(U_n)_{n\in\mathbb{N}}$ (toutes de même format) converge vers une matrice L si les coefficients de U_n convergent vers les coefficients de L correspondants.

En pratique, pour déterminer cette limite, on exprimera U_n en fonction de n par l'une des méthodes précédentes, puis on étudiera la limite des coefficients de U_n .

Exemple 6.5 Soit
$$U_n = \begin{pmatrix} 0, 5^n \\ 1 - 0, 2^n \end{pmatrix}$$
 pour tout n de $\mathbb N$.

Comme $\lim_{n\to\infty} 0, 5^n = 0$ et $\lim_{n\to\infty} 1 - 0, 2^n = 1$, on dira que la suite (U_n) a pour limite la matrice $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Remarque 6.2 Soit la suite (U_n) telle que $U_n = A^n U_0$. Si (A^n) tend vers L, alors la suite (U_n) tend vers LU_0 .